Clarity Treinamentos
  • Cabeamento Estruturado
    • Par trançado
    • Fibras Ópticas
    • Instalação de cabeamento estruturado
    • Projeto de cabeamento estruturado
    • Testes de cabeamento estruturado
    • Treinamento em cabeamento estruturado
    • Normas para cabeamento estruturado
  • Data centers
    • Tipos de data center
      • Data center corporativo
      • Data center de colocation
      • Data center de hospedagem
      • Data center em hiperescala
      • Data center em nuvem
      • Data center central
      • Edge data center
      • Micro data centere
    • Infraestrutura de data center
      • Arquitetura do data center
      • Ar condicionado do data center
      • Cabeamento de telecomunicações do data center
      • Distribuição elétrica do data center
      • Segurança patrimonial do data center
      • Automação do data center
    • Padrões para data centers
      • ISO/IEC 22237
      • ISO/IEC 30134
    • Operação de data center
    • Eficiência energética de data center
    • Treinamento em data center
  • Computação
    • Inteligência Artificial
    • Supercomputadores
    • Servidores
    • Comunicação de dados
    • Ethernet
    • Armazenamento de dados
No Result
View All Result
  • Cabeamento Estruturado
    • Par trançado
    • Fibras Ópticas
    • Instalação de cabeamento estruturado
    • Projeto de cabeamento estruturado
    • Testes de cabeamento estruturado
    • Treinamento em cabeamento estruturado
    • Normas para cabeamento estruturado
  • Data centers
    • Tipos de data center
      • Data center corporativo
      • Data center de colocation
      • Data center de hospedagem
      • Data center em hiperescala
      • Data center em nuvem
      • Data center central
      • Edge data center
      • Micro data centere
    • Infraestrutura de data center
      • Arquitetura do data center
      • Ar condicionado do data center
      • Cabeamento de telecomunicações do data center
      • Distribuição elétrica do data center
      • Segurança patrimonial do data center
      • Automação do data center
    • Padrões para data centers
      • ISO/IEC 22237
      • ISO/IEC 30134
    • Operação de data center
    • Eficiência energética de data center
    • Treinamento em data center
  • Computação
    • Inteligência Artificial
    • Supercomputadores
    • Servidores
    • Comunicação de dados
    • Ethernet
    • Armazenamento de dados
No Result
View All Result
Clarity Treinamentos
No Result
View All Result
Home Cabeamento estruturado Fibras ópticas

Balanço de potência óptica

Marcelo Barboza by Marcelo Barboza
30/04/2024
in Fibras ópticas, Projeto de cabeamento estruturado
4
0
SHARES
738
VIEWS
Share on FacebookShare on Twitter

Escrevi em outros artigos sobre o balanço de perda óptica e seu cálculo. Mas existe um conceito muito parecido, que acaba causando confusão com o anterior, que é o do “balanço de potência óptica”. Neste artigo, vamos falar sobre ele, e como ele se diferencia do balanço de perda.

Ao final do artigo, links para vídeos meus sobre este assunto.

Só para recordar, o “balanço de perda óptica” é um cálculo realizado para estimar qual será a atenuação total de um enlace em fibra óptica antes mesmo de ser instalado. Já o “balanço de potência óptica” é um cálculo realizado para se conhecer a quantidade mínima e máxima de potência que poderá (ou deverá) ser perdida durante a transmissão.

O curso DC100 (Fundamentos em Infraestrutura de data centers) pré-gravado introduz o aluno ao mundo dos data centers, apresentando os fundamentos dos principais elementos e disciplinas de engenharia que compõe a infraestrutura desses ambientes críticos de processamento e armazenamento de dados – os data centers.

O balanço de perda é específico para os tipos de equipamentos de transmissão e recepção (transceivers) que serão utilizados. Portanto, para realizar esse cálculo é absolutamente necessário saber quais os modelos exatos dos transceivers que serão empregados em determinada instalação.

As características dos equipamentos que precisam ser conhecidas são:

  • Potência do transmissor
  • Sensibilidade do receptor
  • Faixa dinâmica do receptor

Esses valores são tipicamente expressos em “dBm”. O dBm é uma unidade de medida que expressa a potência absoluta mediante uma relação logarítmica (em decibéis) com base em 1 mW. Ou seja, 0 dBm equivale a 1 mW. Como exemplo, 30 dBm representa uma potência 30 dB superior a 1 mW, ou seja, 1.000 mW, ou 1 W. Em mais um exemplo, -10 dBm representa uma potência 10 dB inferior a 1 mW, ou seja, 0,1 mW, ou 100 µW.

O cálculo do balanço de potência é simples: subtraímos a sensibilidade do receptor da potência do transmissor para saber o quanto de potência podemos perder durante a transmissão sem que haja uma diminuição significativa na sua qualidade (expressa pela “taxa de erro de bit”, ou BER).

Exemplos:

  • Equipamento com potência de transmissão de 10 dBm e sensibilidade do receptor de 2 dBm.
    Balanço de potência = 10 dBm – 2 dBm = 8 dB.
    Ou seja, o canal passivo de transmissão (enlace óptico completo) pode apresentar atenuação de até 8 dB sem que haja degradação de qualidade
  • Equipamento com potência de transmissão de -5 dBm e sensibilidade do receptor de -20 dBm.
    Balanço de potência = -5 dBm – (- 20 dBm) = 15 dB.
    Ou seja, o canal passivo de transmissão (enlace óptico completo) pode apresentar atenuação de até 15 dB sem que haja degradação de qualidade.

Mas não devemos nos esquecer da faixa dinâmica do receptor. Ela nos informa os valores mínimos e máximos de potência que devem ser recebidos para que o equipamento interprete os sinais recebidos corretamente.

Se um receptor possui sensibilidade de -20 dBm e faixa dinâmica de 15 dB, isso significa que ele aceita sinais com potência entre -20 dBm e -5 dBm (ou seja, -20 + 15). Se ele receber um sinal com potência superior a -5 dBm, também haverá degradação na qualidade, e poderá ocorrer até mesmo a queima do receptor. Por exemplo, se a potência do transmissor for de -2 dBm, além de saber que a atenuação máxima deve ser inferior a 18 dB (-2 – (-20)), também saberemos que a atenuação mínima do canal deverá ser de 3 dB (-2 -(-5))! Se o enlace óptico não possuir atenuação igual ou maior que 3 dB, também haverá degradação da qualidade da transmissão, com aumento do BER.

Se quiser entender melhor sobre db e dBm antes de continuar a ler o artigo, assista esse vídeo:

Entenda dB e dBm

Isso ocorre com frequência em equipamentos de transmissão de longa distância, que possuem alta potência de transmissão e ata sensibilidade do receptor, pois devem contar com enlaces de diversos quilômetros de fibra óptica, com diversas emendas. Nesses casos, quando queremos testar os equipamentos em uma bancada, e vamos conectá-los apenas com um patch cord, corremos o risco de até queimar o receptor, tamanha será a potência recebida. Para isso, devemos usar atenuadores, dispositivos que introduzem uma perda proposital no enlace a fim de não “inundar” o receptor com uma potência que esteja fora de sua faixa dinâmica.

Como vimos, o resultado do balanço de potência nos dá a atenuação máxima que o canal óptico passivo pode apresentar para que o equipamento de rede funcione a contento. E é agora que entra o outro cálculo, o do “balanço de perda óptica” que vimos nos outros artigos. Sabendo do balanço de potência, temos que projetar um enlace que apresente um balanço de perda inferior ao balanço de potência do equipamento.

Ao utilizar o valor do balanço de perda, não devemos deixar de incluir previsões para manutenções futura, além de uma margem de segurança.

Exemplos:

  • Enlace composto por 20 km de fibra monomodo OS2 terminada em ambas as extremidades dentro de distribuidores ópticos (DIO) através da fusão de pigtails, cujos conectores serão acoplados na parte interna dos adaptadores frontais do DIO; haverá uma fusão no meio da rota; prever duas fusões para manutenção futura. Equipamento com potência de transmissão de 10 dBm e sensibilidade do receptor de -5 dBm:
    1. Perda da fibra óptica: 20 km X 0,4 dB/km = 8,0 dB
    2. Perda das conexões: 2 X 0,75 dB = 1,5 dB
    3. Perda das emendas: 3 X 0,3 dB = 0,9 dB
    4. Previsão de perda das possíveis emendas futuras: 2 X 0,3 dB = 0,6 dB
    5. Margem de segurança: 1 dB
    6. Balanço da perda (1310 nm e 1550 nm): 8,0 + 1,5 + 0,9 + 0,6 + 1,0 = 12,0 dB
    7. Balanço da potência: 10 – (-5) = 15 dB
    8. Conclusão: projeto correto, pois ainda há uma margem de 3 dB (15 – 12) entre o balanço da potência e as perdas projetadas do enlace óptico.
  • Enlace composto por 30 km de fibra monomodo OS2 terminada em ambas as extremidades dentro de distribuidores ópticos (DIO) através da fusão de pigtails, cujos conectores serão acoplados na parte interna dos adaptadores frontais do DIO; haverá duas fusões no meio da rota; prever duas fusões para manutenção futura. Equipamento com potência de transmissão de 5 dBm e sensibilidade do receptor de -10 dBm:
    1. Perda da fibra óptica: 30 km X 0,4 dB/km = 12,0 dB
    2. Perda das conexões: 2 X 0,75 dB = 1,5 dB
    3. Perda das emendas: 4 X 0,3 dB = 1,2 dB
    4. Previsão de perda das possíveis emendas futuras: 2 X 0,3 dB = 0,6 dB
    5. Margem de segurança: 1 dB
    6. Balanço da perda (1310 nm e 1550 nm): 12,0 + 1,5 + 1,2 + 0,6 + 1,0 = 16,3 dB
    7. Balanço da potência: 5 – (-10) = 15 dB
    8. Conclusão: projeto incorreto, o enlace óptico projetado pode apresentar perda acima do tolerado pelo equipamento previsto.

Equipamentos de rede Ethernet já possuem tabelas que mostram o balanço da perda alocada para o enlace óptico, assim não precisamos realizar esse cálculo, basta consultar as tabelas publicadas no padrão IEEE 802.3. Como exemplo, a tabela abaixo mostra a perda máxima alocada para o canal óptico para os padrões Ethernet sobre fibra óptica entre as velocidades de 10 Mb/s e 1 Gb/s:

Padrão FibraComprimento de onda (nm) Perda máx. do canal (dB)
10BASE-FL OM1 850 12,5
100BASE-FXOM1 1300 11
1000BASE-SX OM2 850 3,56
1000BASE-LX OM2 1310 2,35
1000BASE-LX SM 1310 4,57
Tabela: Requisitos para alguns padrões de rede Ethernet


Saiba mais sobre o balanço de perda óptica no curso SCE335, e sobre os padrões Ethernet no curso SCE381. Ao final de cada curso, você poderá baixar materiais de referência, realizar avaliações e, se for bem nelas, ainda receberá certificados de conclusão!

Complemente o conhecimento com meus vídeos abaixo, sobre o cálculo do balanço de perda e potência óptica:

Orçamento de potência óptica
Cálculo do balanço ou orçamento de perda óptica (optical loss budget)

Se achou este post útil, compartilhe, encaminhe a alguém que também possa achá-lo útil. Não deixe de se inscrever em meu canal do YouTube! Participe de meu grupo do Whatsapp e receba as novidades sobre meus artigos, vídeos e cursos. E curta minha página no Facebook!

Até a próxima!

Marcelo Barboza, RCDD, DCDC, ATS, DCS Design, Assessor CEEDA
Clarity Treinamentos
marcelo@claritytreinamentos.com.br

Sobre o autor
Marcelo Barboza, instrutor da área de cabeamento estruturado desde 2001, formado pelo Mackenzie, possui mais de 30 anos de experiência em TI, membro da BICSI e da comissão de estudos sobre cabeamento estruturado da ABNT/COBEI, certificado pela BICSI (RCDD, DCDC), Uptime Institute (ATS) e DCPro (Data Center Specialist – Design). Instrutor autorizado para cursos selecionados da DCProfessional, Fluke Networks, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.

Tags: balanço perda ópticabalanço potênciafibra ópticaorçamento perdaprojeto de fibra
Previous Post

Canal de cabeamento estruturado no YouTube

Next Post

A categoria 8 e o Ethernet a 40 Gb/s

Marcelo Barboza

Marcelo Barboza

Instrutor, consultor e auditor da área de cabeamento estruturado e infraestrutura de data centers. Formado pelo Mackenzie, possui mais de 35 anos de experiência em TI, membro das comissão de estudos sobre cabeamento estruturado e data centers da ABNT, certificado pela BICSI (RCDD e DCDC), Uptime Institute (ATS) e DCPRO (Data Center Specialist & Practitioner). Instrutor autorizado para cursos selecionados da DCD Academy, Fluke Networks, Instituto Brasil Pós, Panduit e Clarity Treinamentos. Assessor para o selo de eficiência para data centers – CEEDA.

Next Post
A categoria 8 e o Ethernet a 40 Gb/s

A categoria 8 e o Ethernet a 40 Gb/s

Comments 4

  1. Rubem says:
    6 anos ago

    duas perguntas atenuação de 3,5 db com uma distancia de 10 km e uma potencia minima de entrada de 1,5 dbm no receptor óptico. qual potencia da saída do transmissor ?

    potencia no cliente -2dbm corrigido uma atenuação no link de 3db depois qual vai ser minha potencia no cliente?

    Responder
    • admin says:
      6 anos ago

      Rubem, no primeiro caso, se tem que chegar pelo menos 1,5 dBm, enfrentando atenuação de 3,5 dB do canal, a potência mínima de transmissão deve ser 1,5 + 3,5 = 5 dBm. Não entendi o segundo caso…

      Responder
    • Henrique Mota da rosa says:
      5 anos ago

      Opa queria fazer uma pergunta um link de 13km ponto a ponto com 6 vias áreas com a fonte óptica bifibra com vão de 120 áreas com cordões e conectores bobina de 4 mil metros como faria esse cálculo

      Responder
      • admin says:
        5 anos ago

        Henrique, precisa determinar, para cada fibra, quantos metros de fibra você tem, quantas fusões e quantas conexões (conectores acoplados), de ponta a ponta. O cálculo deverá ser o mesmo para cada uma das 6 fibras que você tem.

        Responder

Deixe um comentário Cancelar resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Cursos

  • Combo de Certificação de Cabeamento UTP e FO
  • SCE335 – Orçamento de Perda e de Potência Óptica
  • DC100 – Fundamentos em infraestrutura de data center
  • SCE100 – Fundamentos de cabeamento estruturado na era da internet das coisas
  • SCE321 – Características dos cabos de fibra óptica
  • SCE331 – Certificação de Enlaces em Cabo de Par Metálico Balanceado
  • SCE333 – Certificação de Enlaces Óptico em Tier 1
  • SCE334 – Teste de Enlaces Ópticos com OTDR
  • SCE341 – Cálculo de Taxa de Ocupação de Caminhos para Cabeamento Estruturado
  • Fluke CCTT Versiv

Ferramentas

  • Índice de Ferramentas de IA Generativa
  • Conversão de Unidades
  • Redimensionamento de Imagens
  • Calculadora de Balanço de Perda Óptica
  • Calculadora de Ocupação em Calhas
  • Calculadora de Ocupação em Eletrodutos
  • Calculadoras de Decibéis
  • Calculadora de Energia Para Data Center
  • Categorias das Fibras Ópticas MM e SM
  • Categorias de Componentes e Links de Par Trançado
  • Identificação das fibras ópticas por cores
  • Padrões Ethernet
  • Projeto de Link FO e Ethernet
  • Normas Para Cabeamento Estruturado
  • Normas Para Data Centers

Recomendações

  • Produtos Recomendados
  • Livros Recomendados

Tools (english)

  • Conduit Fill Calculator
  • Decibel Calculators
  • Design of Fiber Optic Link for Ethernet
  • Optical loss budget calculator
  • Raceway Fill Calculator

Recent Posts

  • O Paradoxo do 42: Por Que Saber Perguntar é Mais Importante que Ter uma IA Poderosa
  • Novidades em Cabeamento – 21/Jul/2025
  • Novidades no Mundo dos Data Centers – 16/Jul/2025
  • Fibras Ópticas HCF e MCF: As Tecnologias Revolucionárias que Estão Redefinindo a Transmissão de Dados
  • Entenda as Novas Classificações LSZH na ABNT NBR 14705:2025

Recent Comments

  1. Marco Cesar Queiroz Pizani em Desvende o Cabeamento Estruturado: O Guia Completo para Redes Impecáveis
  2. Marcelo Barboza em Elevando o Padrão em Data Centers: O Curso DC100 da Clarity Treinamentos
  3. Goldebergue Rios em Elevando o Padrão em Data Centers: O Curso DC100 da Clarity Treinamentos
  4. Marcelo Barboza em Avanços e Inovações na Norma ANSI/TIA-942-C: Refinando a Infraestrutura de Data Centers para a Era Moderna
  5. Ricardo Raineri em Avanços e Inovações na Norma ANSI/TIA-942-C: Refinando a Infraestrutura de Data Centers para a Era Moderna
Facebook Youtube Instagram

Archives

  • julho 2025
  • junho 2025
  • maio 2025
  • abril 2025
  • março 2025
  • fevereiro 2025
  • janeiro 2025
  • dezembro 2024
  • novembro 2024
  • outubro 2024
  • setembro 2024
  • agosto 2024
  • julho 2024
  • junho 2024
  • maio 2024
  • abril 2024
  • março 2024
  • fevereiro 2024
  • julho 2021
  • maio 2021
  • março 2021
  • abril 2020
  • maio 2019
  • abril 2019
  • março 2019
  • fevereiro 2019
  • dezembro 2018
  • novembro 2018
  • setembro 2018
  • agosto 2018
  • julho 2018
  • maio 2018
  • março 2018
  • novembro 2017
  • outubro 2017
  • julho 2017
  • junho 2017
  • maio 2017
  • abril 2017

Categories

  • Ar condicionado do data center
  • Armazenamento de dados
  • Arquitetura do data center
  • Cabeamento de telecomunicações do data center
  • Cabeamento estruturado
  • Computação
  • Comunicação de dados
  • Data center em hiperescala
  • Data center em nuvem
  • Data centers
  • Distribuição elétrica do data center
  • Edge data center
  • Eficiência energética de data center
  • Ethernet
  • Fibras ópticas
  • Fundamentos de cabeamento estruturado
  • Infraestrutura de data center
  • Instalação de cabeamento estruturado
  • Inteligência Artificial
  • ISO/IEC 22237
  • ISO/IEC 30134
  • Micro data centere
  • Normas para cabeamento estruturado
  • Operação de data center
  • Padrões para data centers
  • Par trançado
  • Projeto de cabeamento estruturado
  • Servidores
  • Supercomputadores
  • Testes de cabeamento estruturado
  • Tipos de data center
  • Treinamento em cabeamento estruturado
  • Treinamento em data center
  • Uncategorized

Categorias de Artigos

  • Ar condicionado do data center (10)
  • Armazenamento de dados (6)
  • Arquitetura do data center (1)
  • Cabeamento de telecomunicações do data center (7)
  • Cabeamento estruturado (8)
  • Computação (4)
  • Comunicação de dados (10)
  • Data center em hiperescala (2)
  • Data center em nuvem (2)
  • Data centers (18)
  • Distribuição elétrica do data center (6)
  • Edge data center (2)
  • Eficiência energética de data center (23)
  • Ethernet (11)
  • Fibras ópticas (56)
  • Fundamentos de cabeamento estruturado (9)
  • Infraestrutura de data center (22)
  • Instalação de cabeamento estruturado (3)
  • Inteligência Artificial (9)
  • ISO/IEC 22237 (1)
  • ISO/IEC 30134 (9)
  • Micro data centere (2)
  • Normas para cabeamento estruturado (13)
  • Operação de data center (7)
  • Padrões para data centers (6)
  • Par trançado (15)
  • Projeto de cabeamento estruturado (20)
  • Servidores (10)
  • Supercomputadores (10)
  • Testes de cabeamento estruturado (28)
  • Tipos de data center (2)
  • Treinamento em cabeamento estruturado (3)
  • Treinamento em data center (2)
  • Uncategorized (1)

No Result
View All Result
  • Cabeamento Estruturado
    • Par trançado
    • Fibras Ópticas
    • Instalação de cabeamento estruturado
    • Projeto de cabeamento estruturado
    • Testes de cabeamento estruturado
    • Treinamento em cabeamento estruturado
    • Normas para cabeamento estruturado
  • Data centers
    • Tipos de data center
      • Data center corporativo
      • Data center de colocation
      • Data center de hospedagem
      • Data center em hiperescala
      • Data center em nuvem
      • Data center central
      • Edge data center
      • Micro data centere
    • Infraestrutura de data center
      • Arquitetura do data center
      • Ar condicionado do data center
      • Cabeamento de telecomunicações do data center
      • Distribuição elétrica do data center
      • Segurança patrimonial do data center
      • Automação do data center
    • Padrões para data centers
      • ISO/IEC 22237
      • ISO/IEC 30134
    • Operação de data center
    • Eficiência energética de data center
    • Treinamento em data center
  • Computação
    • Inteligência Artificial
    • Supercomputadores
    • Servidores
    • Comunicação de dados
    • Ethernet
    • Armazenamento de dados